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Abstract

We developed a pesticide residue burden score (PRBS) based on a food frequency questionnaire 

and surveillance data on food pesticide residues to characterize dietary exposure over the past year. 

In the present study, we evaluated the association of the PRBS with urinary concentrations of 

pesticide biomarkers. Fruit and vegetable (FV) intake was classified as having high (PRBS ≥ 4) or 

low (PRBS < 4) pesticide residues for 90 men from the EARTH study. Two urine samples per man 

were analyzed for seven biomarkers of organophosphate and pyrethroid insecticides, and the 
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herbicide 2,4-dichlorophenoxyacetic acid. We used generalized estimating equations to analyze 

the association of the PRBS with urinary concentrations of pesticide biomarkers. Urinary 

concentrations of pesticide biomarkers were positively related to high pesticide FV intake but 

inversely related to low pesticide FV intake. The molar sum of urinary concentrations of pesticide 

biomarkers was 21% (95% confidence interval (CI): 2%, 44%) higher for each one serving/day 

increase in high pesticide FV intake, and 10% (95% CI: 1%, 18%) lower for each one serving/ day 

increase in low pesticide FV intake. Furthermore, intake of high pesticide FVs positively related to 

most individual urinary biomarkers. Our findings support the usefulness of the PRBS approach to 

characterize dietary exposure to select pesticides.
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INTRODUCTION

Human exposure to pesticides is ubiquitous. More than 90% of the US population has 

detectable concentrations of pesticide biomarkers in their urine or blood.1 Although 

pesticide exposure occurs through a variety of routes, diet especially intake of fruits and 

vegetables is the major exposure pathway to these chemicals in the general population. 

According to the US Pesticide Monitoring Program, fruits and vegetables have a 

considerably higher percentage of detectable pesticide residues and higher percentage of 

samples with residue exceeding the tolerance level than any other foods.2 Others have shown 

that intake of vegetables, but not other food groups, was positively related to urinary 

concentrations of metabolites of pyrethroid insecticides,3 and that substituting 

conventionally grown produce with organic produce dramatically decreases the urinary 

concentrations of select pesticide metabolites.4–6

Urinary biomarkers are commonly used for assessment of contemporary, non-persistent 

pesticide exposure. However, short half-lives, the episodic nature of exposure,7–10 lack of 

specificity for exposure to the parent pesticides,11,12 and high analytic costs may complicate 

the interpretation of urinary biomarker data and limit their utility in large-scale studies. We 

previously developed a low-cost, questionnaire-based method — the dietary pesticide 

residue burden score (PRBS) — to estimate exposure to pesticide residues from foods in 

epidemiologic studies.13,14 This approach can make it possible to explore hypotheses 

regarding the potential health effects of these chemicals quickly and economically. 

Nonetheless, the usefulness of this approach and the ability to extend its use relies on the 

extent that the PRBS can adequately characterize individuals’ exposure when compared with 

traditional biomarkers of pesticide exposure.

We previously showed using data from the National Health and Nutrition Examination Study 

(NHANES) that the PRBS can reasonably rank individuals’ pesticide exposure through diet 

when compared against urinary concentrations of non-specific metabolites of 

organophosphate insecticides.15 However, pesticide exposure in that study was based on the 

concentrations of pesticides biomarkers in a single spot urine sample, which may result in 
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exposure missclassification given the high within-person variability in urinary 

concentrations of the biomarkers.7–10 In addition, the relationship with urinary pyrethroid 

metabolites has not been evaluated, which is particularly important as the use of pyrethroids 

is gaining popularity because they have become an available alternative to organophosphate 

insecticides.16

The present study aimed to validate the PRBS in a well-established longitudinal cohort by 

using two urine samples per participant to characterize exposures to commonly used 

pesticides, including organophosphate and pyrethroid pesticides, two of the most commonly 

used classes of insecticides, and 2,4-dichlorophenoxyacetic acid, an herbicide currently in 

use for broadleaf weed control in agricultural and non-agricultural settings.17

MATERIALS AND METHODS

Study Population

The study population comprised men participating in the Environment and Reproductive 

Health (EARTH) Study, an ongoing prospective cohort study evaluating the relationship of 

environmental and nutritional factors with fertility among couples presenting to the 

Massachusetts General Hospital Fertility Center (Boston, MA, USA). In April 2007, a food 

frequency questionnaire (FFQ) was introduced into the study to assess diet. Of 164 men who 

had completed a FFQ and provided at least two urine samples between April 2007 and July 

2015, we selected 90 men, whose urine samples were collected within 9 months before or 

after FFQ completion, to have their stored urine samples analyzed for urinary pesticide 

biomarkers. Of the 180 samples, three (from three men) had record errors, leaving 177 

samples available for analysis.

Upon study entry, men underwent an anthropometric assessment and completed a nurse-

administered questionnaire in which basic demographic data were collected. Participants 

also completed a detailed take-home questionnaire, which contained questions on various 

lifestyle factors including pesticide exposure history, organic fruit and vegetable 

consumption frequency, and physical activity. Specifically, men were asked if their homes 

had been treated with pesticides in the past 5 years, if their lawns had been treated with 

pesticides in the past year, if they had used pesticide products personally or on pets to repel 

or kill pests in the past year, and if anyone in their household had been treated for head lice 

in the past year. Men were considered to have a history of recent residential pesticide 

exposure if they replied “yes” to any of these questions. Participants were also asked how 

often they consumed one serving of organic fruits and vegetables per day during the past 3 

months. Men were considered as organic fruit and vegetable consumers if they consumed 

organic FVs ≥ 3 servings per week of organic fruits and vegetables; men with a lower intake 

of organic fruits and vegetables were considered as conventional fruit and vegetable 

consumers. We calculated total physical activity (hrs/week) according to participants’ time 

spent in physical activities at enrollment using a validated questionnaire.18 The study was 

approved by the Human Subjects Committees of the Harvard T.H. Chan School of Public 

Health and the Massachusetts General Hospital, and the Centers for Disease Control and 

Prevention.19 Informed consent was obtained from all participants.
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Dietary Assessment

Diet was assessed using a previously validated 131-item FFQ.20 Men were asked to report 

how often, on average, they had consumed specified amounts of each food, beverage, and 

supplement in the questionnaire over the past year. The serving sizes for fruits and 

vegetables were described specifically for each item in the FFQ using standard portion sizes 

(e.g., one apple, ½ avocado) or volumes (e.g., ½ cup of broccoli). In a validation study21 the 

de-attenuated correlation (i.e., corrected for random within-person variability) between two, 

one-week diet records and FFQ reports ranged from 0.27 for spinach to 0.95 for banana.

Pesticide Residue Assessment

We assessed pesticide residues in fruits and vegetables using data from US Department of 

Agriculture’s Pesticide Data Program, a national program started in 1991 that annually tests 

agricultural commodities in the USA for the presence of ~ 450 different pesticide residues.22 

To best represent the pesticide residues in the food supply, the Pesticide Data Program 

collects samples from 10 or more participating States comprising 50% of the nation’s 

population. Before testing, the produce is either washed or peeled to mimic consumer 

practices, allowing for realistic estimates of exposure. To determine the average pesticide 

residue status of fruits and vegetables, we developed the PRBS using the Pesticide Data 

Program annual reports corresponding to the periods in which the diet history of the 

participants was captured by the FFQ.22 Briefly, we defined PRBS13 according to three 

contamination measures from the Pesticide Data Program: (1) the percentage of samples 

tested with any detectable pesticides; (2) the percentage of samples tested with pesticides 

exceeding tolerance levels; and (3) the percentage of samples with three or more individual 

detectable pesticides. We ranked the 36 FVs included in the FFQ according to each of the 

three contamination measures, divided them into tertiles for each of these three measures, 

and assigned each food a score of 0, 1, and 2 corresponding to the bottom, middle, and top 

tertile, respectively. The final PRBS for each food was the sum of tertile scores across the 

three PDP contamination measures (Supplementary Table 1). We classified foods with a 

PRBS ≥ 4 as high pesticide residue foods and those with a PRBS < 4 as low pesticide 

residue foods.13 To derive a PRBS specific to a class of pesticides, we used a similar 

algorithm (i.e., three contamination measures) but restricted Pesticide Data Program data to 

organophosphates and pyrethroids only for calculating organophosphate-PRBS and 

pyrethroid-PRBS, respectively. In sensitivity analyses, we also considered an alternate 

measure, PRBS-weighted fruit and vegetable intake, calculated as the product of each food’s 

PRBS score (on a scale of 0 to 6) and its intake frequency.

Urine Pesticide Biomarker Measurements

Men collected spot urine samples at the baseline and follow-up clinic visits in sterile 

polypropylene cups. Specific gravity was measured using a handheld refractometer 

(National Instrument Company, Baltimore, MD, USA). The urine was aliquoted and stored 

at − 80 °C. Samples were shipped on dry ice overnight to the CDC (Atlanta, GA, USA) 

where they were analyzed for seven pesticide biomarkers: three organophosphate 

metabolites: 3,5,6-trichloro-2-pyridinol (TCPY), a metabolite of chlorpyrifos and 

chlorpyrifos-methyl; 2-isopropyl-4-methyl-6-hydroxy-pyrimidine (IMPY), a metabolite of 
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diazinon; and para-nitrophenol (PNP), a metabolite of parathion and methyl parathion; three 

metabolites of pyrethroids: 4-fluoro-3-phenoxybenzoic acid (4F-3-PBA), a metabolite of 

cyfluthrin; trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (trans-

DCCA), a metabolite of permethrin, cypermethrin, and cyfluthrin; and 3-phenoxybenzoic 

acid (3-PBA), a non-specific metabolite of cyhalothrin, cypermethrin, deltamethrin, 

fenpropathrin, permethrin, and tralomethrin; and one chlorophenoxy herbicide, 2,4-

dichlorophenoxyacetic acid (2,4-D) (Supplementary Table 2). Solid phase extraction and 

high-performance liquid chromatography-isotope dilution tandem mass spectrometry was 

used to quantify the concentrations of these biomarkers. Procedure details and quality 

control procedures are described elsewhere.23 Due to presence of interfering compounds, 

IMPY concentrations in 19 urine samples could not be quantified. The limit of detection 

(LOD) for each biomarker is shown in Table 2.

Statistical Analysis

We adjusted biomarker concentrations for urine dilution using the formula Pc = P((1.015 

− 1)/specific gravity − 1), where Pc is the specific gravity-adjusted pesticide biomarker 

concentration (µg/l), P is the measured pesticide biomarker concentration (µg/l), and 1.015 is 

the mean specific gravity concentration in the study population.24 Non-detectable pesticide 

biomarker concentrations were replaced with a value equal to the LOD divided by square 

root of 2 before specific gravity adjustment.25 To quantify variability in urinary pesticide 

biomarkers, we calculated the intraclass correlation coefficient (ICC)26 based on the 

estimates of within-and between-subject variance obtained from the repeated measures in 

mixed effect models. Due to low detection rates for 4F-3-PBA and trans-DCCA 

concentrations, these two biomarkers were not considered in the following analyses.

To estimate the total pesticide burden based on urinary concentrations of pesticide 

biomarkers, we calculated the molar sum of the biomarkers (in µmol/l) by dividing each 

biomarker concentration by its molecular weight and then summing all concentrations across 

biomarkers. The molar sum was also calculated separately for each class of pesticides. We 

also ranked the participants according to each urinary pesticide concentration, and summed 

the ranks across the urinary biomarkers for each participant. Of note, for the summary 

measures of pyrethroid insecticide metabolites, we only used the data from 3-PBA, which is 

a non-specific metabolite of a wide class of pyrethroids.27 Intake of fruits and vegetables 

(i.e., high pesticide fruit and vegetable intake, low pesticide fruit and vegetable intake, and 

PRBS-weighted fruit and vegetable intake) was modeled as continuous variables as well as 

in quartiles. We used linear regression with generalized estimating equations to evaluate the 

relation of fruit and vegetable intake (modeled as independent variables) with specific 

gravity-adjusted individual pesticide biomarkers as well as the overall molar sum (modeled 

as dependent variables), while accounting for within-person correlations in repeated samples 

of the same individual. Specific gravity-adjusted urinary pesticide biomarkers were log-

transformed to meet normality assumptions of linear regression. Resulting coefficients were 

back transformed to improve interpretability. Models were adjusted for age (years), body 

mass index (BMI) (kg/m2), total physical activity (h/week), race (white or non white), 

smoking status (ever or never), education levels (some college or lower, or college graduate), 

organic fruit and vegetable consumption (< 3 times per week, or ≥ 3 times per week), years 
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and season (spring, summer, fall, or winter) of urine sample collection, and recent residential 

pesticide exposure history (yes or no) with the goal of decreasing extraneous variation in 

urinary biomarker concentrations.28 Models for high pesticide residue fruit and vegetable 

intake were additionally adjusted for low pesticide fruit and vegetable intake, and vice versa, 

as intake of high pesticide fruits and vegetables and low pesticide fruits and vegetables may 

confound each other. Robust estimators of variance were used to compute 95% confidence 

intervals (CIs). Population marginal means were utilized to present population averages 

adjusted for the covariates29 at their average level for continuous covariates and reference 

level for categorical variables. Tests for linear trend were performed using median intake of 

fruits and vegetables in each quartile as a continuous variable. In addition, we calculated the 

de-attenuated Spearman correlation (i.e., observed correlation corrected for within-person 

variability) between high/low pesticide fruit and vegetable intake and molar sum of urinary 

pesticide biomarkers.30

We also conducted additional sensitivity analyses in which we excluded the urine samples 

provided more than 6 months before or after FFQ completion. In addition, effect 

modification by organic food consumption (< 3 times per week vs ≥ 3 times per week), and 

recent residential pesticide exposure history (yes vs no) was tested using cross-product terms 

in the multivariable model. Lastly, we evaluated the association between organic fruit and 

vegetable consumption frequency (in quartiles) and the molar sum of urinary pesticide 

biomarkers adjusting for total fruit and vegetable intake and the same set of covariates in the 

main model. Statistical analyses were performed with SAS v9.4 (SAS Institute, Cary, NC, 

USA). Two-sided P-values < 0.05 were considered significant.

RESULTS

Most of the 90 men were white (89%), nonsmokers (68%), overweight or obese (68%), and 

their median age was 36.1 years (Table 1). The median (25th, 75th percentile) intake of 

fruits and vegetables was 3.6 (2.6, 5.1) servings/day. Seventy-three men (81%) reported a 

history of residential pesticide exposure in the past year. Approximately one fourth of the 

participants reported consuming organic fruits and vegetables three times or more per week. 

Organic fruit and vegetable consumers had higher intakes of both high pesticide (mean: 2.1 

vs 1.2 servings/day) and low pesticide (mean: 3.2 vs 2.5 servings/day) fruits and vegetables 

than conventional fruit and vegetable consumers. The molar sum of urinary pesticide 

biomarkers was the same among organic and conventional fruit and vegetable consumers 

(mean: 17 µmol/l).

All pesticide biomarkers were detected in over 50% of samples, except for 4F-3-PBA and 

trans-DCCA which were detected only in 8.5% and 17% of the samples, respectively (Table 

2). The SG-adjusted geometric mean urinary concentrations for the 177 samples from 90 

men were 0.69 (TCPY), 0.84 (PNP), 0.57 (IMPY), 0.38 (3-PBA) and 0.35 (2,4-D) µg/l 

(Table 2). These urinary pesticide biomarkers had low reproducibility with ICCs ranging 

from 0.03 (TCPY) to 0.37 (3-PBA) (Supplementary Table 2).

The PRBS for high residue fruits and vegetables was positively related to urinary pesticide 

biomarker concentrations (de-attenuated r = 0.55). In the unadjusted analysis, the molar sum 
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of urinary pesticide biomarkers was 20% (95% CI: − 1%, 44%) higher for each one 

serving/day increase in high pesticide fruit and vegetable intake. Multivariable adjustment 

slightly strengthened the association, with the molar sum of urinary pesticide biomarkers 

increasing by 21% (95% CI: 2%, 44%) per one serving increase in high pesticide fruit and 

vegetable intake. Results were similar when consumption of high pesticide fruit and 

vegetable was modeled in quartiles of intake. Specifically, adjusted molar sum of urinary 

pesticide biomarkers were 18, 18, 23, and 28 µmol/l for men in increasing quartiles of high 

pesticide fruit and vegetable intake (p, trend = 0.03; Figure 1a). When each urinary pesticide 

was assessed individually, positive trends for high pesticide fruit and vegetable intake and 

urinary pesticide biomarkers were observed for most individual pesticides except for TCPY 

(Table 3). These associations were stronger when the analysis was restricted to urine 

samples collected within 6 months of FFQ completion (Supplementary Table 3). On the 

other hand, PRBS for low residue fruits and vegetables were negatively associated with 

urinary pesticide biomarkers concentrations (de-attenuated r = − 0.36). The unadjusted and 

adjusted molar sum of urinary pesticide biomarkers were 9% (95% CI: 1%, 19%) and 10% 

(95% CI: 1%, 18%) lower, respectively, for each one serving/day increase in low pesticide 

fruit and vegetable intake. The PRBS for low residue fruits and vegetables, when modeled as 

quartile variable, was also inversely related to the molar sum of urinary pesticide biomarkers 

(p, trend = 0.05; Figure 1a) but unrelated to any of the individual urinary biomarkers (Table 

3). Furthermore, the PRBS-weighted fruit and vegetable intake was unrelated to urinary 

pesticide biomarkers (Figure 1a). These results were similar when the sum of ranks of 

pesticide biomarkers was used as comparison (Figure 1b) and when we excluded three men 

without a second sample available for analysis.

In analyses within class of pesticide, the PRBS based only on organophosphates for high 

pesticide fruits and vegetables were associated with higher urinary concentrations of 

organophosphate pesticides metabolites (Table 4). Specifically, men in the highest quartile of 

organophosphate-PRBS for high pesticide fruit and vegetable intake had 56% (95% CI: 8%, 

125%) higher molar sum of organophosphate metabolites than men in the lowest quartile (p, 

trend = 0.02). Results were similar when the organophosphate-PRBS was compared against 

the sum of ranks of urinary organophosphate metabolites (Table 4). On the other hand, 

pyrethroid-PRBS for high pesticide fruit and vegetable intake were also positively related to 

the molar concentrations of 3-PBA and rank of the urinary 3-PBA concentration, albeit the 

association was weaker for molar concentration (Table 5).

There was no statistical evidence of heterogeneity in the association between high pesticide 

fruit and vegetable intake and molar sum of urinary pesticide biomarkers according to 

organic fruit and vegetable consumption frequency, or recent residential pesticide exposure 

history (P, interaction >0.10 in all cases).

Lastly, we evaluated the association between frequency of organic fruit and vegetable 

consumption and molar sum of urinary pesticide biomarkers. The de-attenuated correlation 

coefficient was 0.36 between organic fruit and vegetable intake and molar sum of urinary 

pesticide biomarkers. There were no significant differences in urinary concentrations of 

pesticide biomarkers across quartile of organic fruit and vegetable consumption (Figure 2).
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DISCUSSION

We compared the PRBS against urinary pesticide biomarkers to evaluate the usefulness of a 

food frequency questionnaire method to estimate dietary intake of pesticides in 

epidemiologic studies. We found that intake of high pesticide fruit and vegetable was 

positively associated with urinary concentrations of pesticide biomarkers suggesting that this 

low-cost questionnaire-based method could be used as a tool to evaluate exposure in studies 

on health effects of pesticides before making the significant financial investment entailed in 

collecting and generating exposure biomonitoring data.

As objective measures reflecting aggregate exposure and internal dose, urinary biomarkers 

have been widely used to assess contemporary pesticide exposure in many studies.5,31–33 

These biomarkers of exposure, however, are well known for having short half-lives, being 

sensitive to the episodic nature of exposure (reflected as low ICCs in the present study),7,8 

relatively poor time integration and high analytic costs, limiting their use for long-term 

exposure assessment in epidemiologic studies when repeated measurements over years can 

not been obtained. On the other hand, the PRBS leverages the features of FFQ data, which 

reflect a longer period of dietary intake (i.e., a year) and is not as costly. Therefore, the 

PRBS approach can be useful in studies where the goal is to assess the effect of dietary 

pesticide exposure on chronic diseases, especially suitable for in cohorts with repeated FFQ 

measurements across years. In fact, the underlying principle of coupling a dietary 

questionnaire and national surveillance data, in the form of nutrient composition tables, has 

been widely implemented in nutritional epidemiology and used as a biologically meaningful 

measure of intake.28 Foods are vehicles for nutrients as well as non-nutritive constituent 

chemicals including pesticide residues. The present study shows that we may extend the 

coupling method to screen hypotheses regarding the potential health effects of pesticide 

residues as well.

The study findings complement the previous research from our group15 showing that PRBS 

had value as a surrogate for dietary organophosphate pesticide exposure. Hu et al. found that 

there was a dose response relationship between dietary pesticide exposure estimated by 

PRBS and urinary dialkylphosphate metabolites (non-specific organophosphate biomarkers) 

in 1918 adult participants from the 2003–2004 US National Health and Nutrition 

Examination Survey.15 In the present study conducted in a well-characterized longitudinal 

cohort, we further targeted three commonly used organophosphate pesticides, including 

chlorpyrifos, parathion, and diazinon, using two urine samples from each participant. 

Notably, these pesticides have been banned for indoor residential use since early 2000,34 

suggesting that at present the major source of these chemicals is likely from diet, assuming 

that these pesticides were all used legally. In partial agreement with this hypothesis, we 

found positive trends of high pesticide fruit and vegetable intake with urinary concentrations 

of IMPY and PNP, and, to a lesser extent, TCPY. The weaker association with TCPY could 

be related to its high within-person variability (reflected in a low ICC), or to exposure to 

chlorpyrifos in public spaces such as golf-courses, turf, green houses, and wood treatment, 

that were not affected by the residential use ban;35 such uses could make this metabolite less 

specific to exposure via diet than the other two organophosphate metabolites studied.
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In addition to evaluating specific metabolites of organophosphate pesticides, we added to the 

previous study15 by evaluating the association of pyrethroid-PRBS derived high pesticide 

fruit and vegetable intake with urinary concentrations of pyrethroid metabolites. There was a 

suggestive positive trend between high pesticide fruit and vegetable intake and molar sum of 

pyrethroid biomarkers. Interestingly, the distinguishability of PRBS was stronger for 

organophosphate than pyrethroid pesticides. This finding was not surprising as pyrethroids 

as a replacement for organophosphates in residential pest control,16 which may in turn, 

reduce the predictability of the urinary biomarkers for dietary exposure. In addition, the 

shorter half-life of pyrethroid pesticides (~5.7 h for 3-PBA) relative to certain 

organophosphate pesticides (~27 h for TCPY) may also partly explain the weaker 

association of the PRBS with pyrethroid relative to that with organophosphate 

pesticides.36,37 We found a significantly positive association between high pesticide fruit 

and vegetable intake and 2,4-D urinary concentrations. These findings are consistent with 

those of an organic diet intervention study among young children5 in which the investigators 

observed lower, albeit not significantly, 3-PBA urinary concentrations (P = 0.16), and 

significantly lower 2,4-D concentrations (P < 0.01) during the organic diet phase compared 

with the conventional phase. Lastly, and unexpectedly, we found that organic produce 

consumers and conventional produce consumers had similar pesticide biomarker urinary 

concentrations. One likely explanation was that organic produce consumers had higher fruit 

and vegetable intake and not all the consumed produce was organic. Alternatively, 

misclassification of organic fruit and vegetables intake cannot be ruled out as an online 

survey showed that among representative sample of 1005 U.S adult consumers, half of 

consumers think “natural” labeling means no pesticide,38 suggesting that assessing only the 

overall intake frequency of organic fruits and vegetables may be insufficient to characterize 

exposure to pesticides through diet. Taken together, our findings show that PRBS may serve 

a useful tool for assessment of long-term dietary exposure to selected pesticide residues, 

namely organophosphate insecticides, pyrethroid insecticides, and the herbicide 2,4-D.

A similar method was developed by Curl et al. to assess dietary organophosphate pesticide 

exposure in the Multi-Ethnic Study of Altherosclerosis (MESA).39 Briefly, Curl et al. 

estimated the organophosphate pesticide exposure in units of nanomoles per day for each 

individual by summing the product of average daily intake of each fruit and vegetable, 

concentration of organophosphate pesticides in each fruit and vegetable, and molecular 

weight of each organophosphate pesticide. Consistent with our findings, Curl et al. found 

that increasing tertiles of estimated exposure to dietary organophosphate pesticide were 

associated with higher urinary concentrations of dialkylphosphates. In comparison to the 

MESA score, our PRBS first identified produce with high vs low pesticide residue 

contamination, and then summed the intake of the fruits and vegetables with high and low 

pesticide residue, respectively. In spite of using different algorithms, both approaches 

correlate well with urinary pesticide exposure biomarkers. Nonetheless, it is worth 

highlighting that de-linking the potentially deleterious effect of pesticide residues from the 

beneficial components in fruits and vegetables remains a significant challenge in studies 

evaluating pesticide residue intake and associated health risks. While Curl et al.’s approach 

provided a quantitative measure of organophosphate pesticide exposure, our PRBS method 

created a “control” group—low pesticide fruit and vegetable intake, allowing us to compare 
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the effect of high vs low pesticide residue on outcomes of interest in parallel while 

simultaneously accounting for overall intake of fruits and vegetables. In fact, a suggestive 

inverse association between low pesticide fruit and vegetable intake and urinary pesticide 

exposure as well as beneficial effect of low pesticide fruit and vegetable intake on semen 

quality shown in a previous study13 suggest that separating fruits and vegetables into high vs 
low pesticide residue content may be a viable approach to disentangle the health effects of 

fruits and vegetables from those of pesticide contamination of these foods.

Although the PRBS overcomes some of the shortcomings of urinary biomarkers including 

relatively high cost, non-specificity to parent compounds, high variability, and lack of time 

integration, the method is not without limitations. First, pesticide exposure may occur 

through other routes including inhalation and dermal contact, but the PRBS captures 

exposure only through dietary ingestion. Nonetheless, pharmacodynamic studies suggest 

that dermal and inhalation exposure to organophosphate and pyrethroid pesticides in the 

general population is likely to be relatively low due to poor dermal absorption (~1% 

excreted in urine37,40,41) and reduced volatility.42 Second, our estimates of pesticide residues 

in foods were based on surveillance data rather than actual pesticide residues in the food 

consumed by the participants. Nevertheless, the Pesticide Data Program includes selection at 

random of the food samples to be tested from supermarkets across the nation, and monthly 

sampling of foods over each 2-year cycle to allow measurement of seasonal and year-to-year 

variation in pesticide residue concentrations. Therefore, this design helps ensure that 

pesticide contamination values assigned to specific foods are reasonable estimates of the 

actual exposure concentration of any one person consuming foods sold in the United States. 

Third, PRBS does not take potency of toxicity of individual chemicals into account. Of note, 

because the aim of our paper was to investigate the relationship between the PRBS method 

and urinary biomarkers, we did not incorporate toxicity potency factors of individual 

pesticides into the score metric. However, future research on health effects of pesticide 

exposure should consider incorporating toxicity potency factors for each chemical into the 

PRBS method. Fourth, while we chose urinary biomarkers as a comparison measure for the 

PRBS method, it is important to emphasize that urinary biomarkers are not a gold standard 

for chornic exposure and in fact there is no “gold standard” to assess long-term exposure to 

contemporary, nonpersistent pesticides. Furthermore, comparison of the PRBS to urinary 

biomarkers was not expected to demonstrate strong correlation for several reasons including: 

(1) differences in time integration of exposure between FFQ and urinary biomarkers (i.e., 

FFQ captures dietary exposure in the past year while urinary biomarkers reflect exposure 

over past few hours or days; mismatch of time at FFQ and urinary sample assessment), (2) 

non-specificity of PRBS (i.e., PRBS captured overall pesticide exposure instead of targeting 

a certain pesticide biomarker), (3) non-dietary sources of exposure (i.e., PRBS captured 

dietary pesticide exposure while urinary biomarkers capture both dietary and non-dietary 

sources of exposure), (4) measurement error in the FFQ, and (5) high within-person 

variability in urinary pesticide biomarker concentrations. These could, individually and 

collectively, attenuate the observed association of dietary pesticide residue intake measured 

by PRBS and the urinary pesticide biomarker concentrations. Nonetheless, we used two 

urine samples to account for within-person variability in the concentrations of these 

chemicals, collected detailed information including residential exposure history, organic 
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produce consumption frequency and years as well as season of urine sample collection, 

which allowed to remove extraneous variation attributed to these factors. Finally, the 

findings may not be generalizable to the US population because the participants were 

recruited through a fertility clinic, who have a higher social economic status and higher 

intake of fruits and vegetables (median: 3.6 servings/day) compared with the median intake 

in the U.S. population (median: 2.0 servings/day).43 Nevertheless, these results are 

consistent with our previous report comparing the PRBS to non-specific urinary pesticide 

biomarkers in NHANES,15 arguing against problems with generalizability.

In conclusion, the PRBS scoring system is a useful tool for dietary pesticide assessment in 

epidemiological studies aimed at evaluating hypotheses regarding the health effects of long-

term exposure to pesticides through diet.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sum of SG-adjusted urinary pesticide biomarkers according to quartile of high pesticide 

residue, low pesticide residue, and PRBS-weighted fruit and vegetable intake among 88 men 

(158 samples) in the Environment and Reproductive Health (EARTH) Study. Data are 

presented as predicted mean (95% CI) in each quartile adjusted for age, race, BMI, total 

physical activity, smoking status, education, organic fruit, and vegetable consumption, years 

and season of urine sample collections, and residential pesticide use history. Summed 

pesticide biomarkers included TCPY, IMPY, PNP, 3-PBA, and 2,4-D. (a) Molar sum of the 

urinary pesticide biomarkers (µmol/l). (b) Sum of ranks of the urinary pesticide biomarkers.
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Figure 2. 
Molar sum of SG-adjusted urinary pesticide biomarkers according to quartile of organic fruit 

and vegetable intake among 88 men (158 samples) in the Environment and Reproductive 

Health (EARTH) Study. Data are presented as predicted mean (95% CI) in each quartile 

adjusted for age, race, BMI, total physical activity, smoking status, education, total fruit and 

vegetable intake, years and season of urine sample collections, and residential pesticide use 

history. Summed pesticide biomarkers included TCPY, IMPY, PNP, 3-PBA, and 2,4-D. FV, 

fruit and vegetable.
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Table 1

Baseline Characteristics of the 90 men contributing 177 urine samples from the Environment and 

Reproductive Health (EARTH) Study.

Characteristic of men Median (25th, 75th)
or N (%)

Number of men 90

Demographics

  Age, years 36.1 (33.8, 40.4)

  BMI, kg/m2 27.0 (23.7, 28.9)

  Total physical activity, hours/week 6.0 (2.9, 10.5)

  Never smokers, n (%) 61 (68)

  Race, n (%)

    White 80 (89)

    Black/African Americans 1 (1)

    Asian 6 (7)

    Others 3 (3)

  College graduates or higher, n (%) 72 (80)

  Consumed organic FVs ≥ 3 times/week, n (%) 24 (27)

  Residential pesticide exposure, n (%) 66 (73)

Diet

  High pesticide FV intake, servings/day 1.2 (0.8, 1.8)

  Low pesticide FV intake, servings/day 2.5 (1.6, 3.2)

  Total energy intake, kcal/day 2045 (1592, 2470)

Characteristics of urine samples

  Number of urine samplesa 177

  Year of urine sample collection 2010 (2009, 2011)

  Time from FFQ completion to urine sample collection, days 78 (−14, 165)

  Season of urine sample collection, n (%)

    Spring 40 (23)

    Summer 39 (22)

    Fall 44 (25)

    Winter 54 (31)

Abbreviations: BMI, body mass index; FFQ, food frequency questionnaire; N, number.

a
Of 90 men, 87 men had 2 urine samples analyzed and 3 men had 1 urine sample analyzed.
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Table 4

Adjusteda mean of SG-adjusted urinary organophosphate pesticide metabolites according to organophosphate-

PRBS derived high/low pesticide fruit and vegetable intake among 90 men in the Environment and 

Reproductive Health Study.

Urinary organophosphate metabolites

Adjusteda mean
(95% CI) in molar

sumb (µmol/l)

Adjusteda mean
(95% CI) in sumb

of ranks

Quartile (range) of high pesticide fruit and vegetable intake derived by organophosphate-PRBS

  Q1 (0.08, 0.53) 11 (9, 14) 108 (92, 126)

  Q2 (0.54, 0.89) 10 (8, 12) 107 (92, 125)

  Q3 (0.90, 1.33) 14 (11, 17) 131 (115, 150)c

  Q4 (1.35, 3.21) 17 (12, 24)c 142 (116, 174)c

  p, trendd 0.02 0.006

Quartile (range) of low pesticide fruit and vegetable intake derived by organophosphate-PRBS

  Q1 (0.46, 1.93) 14 (10, 18) 126 (105, 153)

  Q2 (1.95, 2.74) 17 (13, 22) 129 (110, 152)

  Q3 (2.76, 3.62) 11 (9, 14) 122 (105, 143)

  Q4 (3.69, 10.4) 10 (8, 12) 107 (93, 124)

  p, trendd 0.03 0.08

a
Adjusting for age, race, BMI, total physical activity, smoking status, education, organic fruit and vegetable consumption frequency, years and 

season of urine sample collections, and residential pesticide use history.

b
Including 3,5,6-trichloro-2-pyridinol, 2-isopropyl-4-methyl-6-hydroxy-pyrimidine, and para-nitrophenol. Due to presence of interfering 

compounds in 19 samples for IMPY, only 158 samples (from 88 men) were available for molar sum organophosphate metabolite analysis.

c
P-value < 0.05 compared with men in the lowest quartile of intake.

d
Estimated using median intake in each quartile as a continuous variable.
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Table 5

Adjusted mean of SG-adjusted urinary pyrethroid pesticide metabolites according to pyrethroid-PRBS derived 

high/low pesticide fruit and vegetable intake among 90 men in the Environment and Reproductive Health 

Study.

Urinary 3-phenoxybenzoic acid (3-PBA)

Adjusted mean (95% CI) in
molar concentrationa

(µmol/l)

Adjusted mean
(95% CI) in ranka

Quartile (range) of high pesticide fruit and vegetable intake derived by pyrethroid-PRBS

  Q1 (0.16, 0.78) 2.3 (1.2, 4.1) 25 (15, 42)

  Q2 (0.83, 1.37) 2.8 (1.6, 4.9) 34 (23, 52)

  Q3 (1.39, 2.00) 2.9 (1.7, 5.1) 43 (29, 66)b

  Q4 (2.06, 5.78) 4.0 (2.4, 6.5) 61 (43, 87)b

  p, trendc 0.15 0.01

Quartile (range) of low pesticide fruit and vegetable intake derived by pyrethroid-PRBS

  Q1 (0.32, 1.64) 2.9 (1.7, 5.1) 45 (30, 69)

  Q2 (1.64, 2.30) 3.4 (2.0, 5.8) 45 (31, 64)

  Q3 (2.31, 3.13) 3.1 (1.9, 5.0) 38 (26, 54)

  Q4 (3.21, 7.87) 1.9 (1.4, 4.4) 30 (19, 49)

  p, trendc 0.48 0.13

Abbreviations: PRBS, pesticide residue burden score; SG-adjusted, specific gravity adjusted. Adjusting for age, race, BMI, total physical activity, 
smoking status, education, organic fruit and vegetable consumption, years and season of urine sample collections, and residential pesticide use 
history.

a
Uses 3-phenoxybenzoic acid as a biomarker of exposure to pyrethroids.

b
P-value < 0.05 compared with men in the lowest quartile of intake.

c
Estimated using median intake in each quartile as a continuous variable.
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